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Abstract

We investigate the problem of determining visible regions given a set of (moving) obstacles and a (moving) vantage

point. Our approach to this problem is through an implicit framework, where the obstacles are represented by a level set

function. The visibility problem is formally formulated as a boundary value problem (BVP) of a first order partial

differential equation. It is based on the continuation of values along the given ray field. We propose a one-pass, multi-

level algorithm for the construction of the solution on a grid. Furthermore, we study the dynamics of shadow

boundaries on the surfaces of the obstacles when the vantage point moves along a given trajectory. In all of these

situations, topological changes such as merging and breaking occur in the regions of interest. These are automatically

handled by the level set framework proposed here. Finally, we obtain additional useful information through simple

operations in the level set framework.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we consider the visibility problem described as follows: given a collection of hypersurfaces
representing the boundaries of objects, called the occluders, in two- or three-dimensional space, determine
qResearch of the first and the third author is supported by ONR N00014-97-1-0027, DARPA/NSF VIP Grant NSF DMS 9615854

and ARO DAAG 55-98-1-0323.

Research for the last author is supported by ONR, NSF, PECASE, and CAREER.

The work of the first author is partially supported by the National Science Foundation under agreement No. DMS-0111298. Any

opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect

the views of the National Science Foundation.
*Corresponding author. Tel.: +1-609-258-6495; fax: +1-609-258-1735.

E-mail addresses: ytsai@math.princeton.edu (Y.-H.R. Tsai), lcheng@math.ucsd.edu (L.-T. Cheng), sjo@math.ucla.edu (S. Osher),

guille@ece.umn.edu (G. Sapiro).

0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2004.02.015

mail to: ytsai@math.princeton.edu


Y.-H.R. Tsai et al. / Journal of Computational Physics 199 (2004) 260–290 261
the regions of space or on the surfaces visible to a given observer. In real world applications, this problem

must be solved efficiently. Generalizations of the visibility problem are just as, if not more, important; this

includes the case of a moving rather than static observer and the determination of regions visible for all time
or invisible for all time in this situation. We begin with the basic visibility problem for simplicity, and

address parts of the dynamic problem later on.

The visibility problem can be reformulated into a problem of determining light and dark regions given a

point light source. Under this point of view, a more precise set of assumptions we make in the visibility

problem include: a space composed of a homogeneous medium and objects with non-reflecting and non-

diffracting surfaces. Furthermore, we disregard interference, assuming that the distances between objects

are large compared to the wavelength of light. Under these conditions, light rays travel in straight lines and

are obliterated upon contact with the surface of an object. Thus a point is called visible with respect to a
vantage point, the observer, if the line segment between the point and the vantage point does not intersect

any of the obstructing objects or their surfaces in space.

Even under these simplifying assumptions, the visibility problem arises as a crucial part of numerous

applications in different scientific fields, including rendering [16], visualization, etching [1], the modeling of

melting ice [5], surveillance, navigation, and inverse problems, to name a few. In the case of computer

graphics and rendering, for example, determination of the visible portions of object surfaces allows for

those portions alone to be rendered, thus significantly saving costly computation in unnecessary (invisible)

regions. In some modeling problems, such as etching and melting ice that we listed above, visibility is used
to find out how certain quantities of interest accumulate, given a radiating source and a (dynamic) surface

configuration. There are also variational problems that minimize the corresponding energy functionals over

the visible regions of the ambient space, see e.g. [17].

Currently there are numerous algorithms for solving the visibility problem using explicit surface rep-

resentations. For example, the work of [11,15] uses linearity to process triangulated surfaces. A detailed

review of related work on the visibility problem, especially concerning explicit surfaces, can be found in

[14]. Furthermore, there are a variety of visibility algorithms from computational geometry (see, e.g. [7] that

is commonly implemented by hardware and [2,3]). These algorithms often combine special data structures
and related algorithms for efficient decomposition and information retrieval of the configuration space.

Some are even implemented commercially in hardware to accelerate the solution.

While explicit surfaces, for example triangulated surfaces, are used in a majority of computer graphics

and vision applications, implicitly represented surfaces are gaining more attention. This is partly due to the

fact that in many applications, the data (i.e. surfaces) are obtained originally and naturally in an implicit

form. It is also because of the fact that more and more problems are formulated and solved using the level

set method [20]. Hence, it is natural to work directly with the implicit data without converting to a different

explicit representation. Currently, visibility algorithms for implicit surfaces mostly consist of sending rays
out from the vantage point to a point of interest (or the reverse) and testing for intersections with the

surfaces of the objects using information arising from the implicit formulation.

Another idea in determining whether a point is visible to a given observer is to compare the geodesic and

Euclidean distances between the observer and that point. See [26] for an example of this approach. The

geodesic distance between two points is the distance in the space in the presence of obstacles, namely the

objects. Let x represent the point of interest and xo represent the observer point. The geodesic distance can

thus be calculated by solving the Eikonal equation

Hð/Þjruj ¼ 1

with condition uðxoÞ ¼ 0, and u ¼ 1 inside of the occluders. Here, HðxÞ ¼ v½0;1ÞðxÞ is the characteristic

function of ½0;1Þ. Thus the point x is occluded if and only if

uðxÞ > jx� xoj:
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However, this algorithm as it was implemented is OðN logNÞ, where N is the number of grid points (see, e.g.

[31]). Furthermore, numerical implementation of the Heaviside function may cause problems for accuracy.

For other related topics, we refer the readers to [28,30,31].
Our proposed method for ray casting is different from any of the above. In essence, we send out rays in

an implicit manner so as to propagate the causality relation of visibility. This implicit framework for

visibility offers many other advantages. For example, the visibility information can be interpreted as the

solution of simple first order PDEs and [29] offers a near optimal solution method on the grid. The dy-

namics of the visibility with respect to moving vantage point or dynamic surfaces can be derived and

tracked implicitly within the same framework. Our method retains nearly all the benefits of a level set

method, including painless Boolean operations of sets, automatic resolution of surfaces as well as the in-

corporation of geometric information and the handling of various surface topologies afforded. By em-
bedding the visibility in a Lipschitz continuous function, we can obtain much more information. For

example, if one is in the shadow and wants to ‘‘be seen’’ as soon as possible, then one can simply follow the

gradient of w. Moreover, by the continuous nature of our solution w, its application to generating ‘‘soft

shadows’’ (or ‘‘diffuse shadows’’) in graphics might be advantageous. Furthermore, using the same

framework and the well developed level set calculus and numerics, one can start solving variational

problems on the visibility numerically with reasonable efficiency [9]. This will then relate to classical

‘‘guarding cameras’’ or ‘‘pursuer-evader’’ problems in computational geometry and robotics.

In our case of visibility, a real valued function / of two or three dimensions, called the level set function,
is introduced. The zero level set of this function represents the surfaces of the occluding objects, and the

points where / is negative represent the interior of the objects. Several efficient algorithms have been de-

veloped in the literature to obtain this representation. There are also methods describing level set imple-

mentation of space partitioning schemes such as octrees. Thus our level set method for visibility will use this

function / whenever the objects are considered.

In our approach, the visibility problem is first formally formulated as a boundary value problem for a

first order PDE whose solution is constructed by correctly extending the boundary values along the ray

fields. The solution of this problem is another level set function, which we called w. We then introduce a
multi-level algorithm for this boundary value problem for a given fixed vantage point. This algorithm

constructs the occlusion boundary, the interface separating visible from invisible. At each resolution level,

we solve a radially defined causality relation on a given grid in one pass, obtaining not only a conservative

estimate of the visible and invisible regions but a locally second order approximation of the occlusion

boundary. Thus, our algorithm is independent of both the convexity of the occluders and the grid geometry,

and its parallelization is straightforward. In comparison with the method using geodesic distance that is

described above, our algorithm in a more primitive form is OðNÞ, a factor of logðNÞ faster.
In the second part of the paper, we extend our study to the dynamic visibility problem. In this case,

we consider a moving vantage point. Obviously the static visibility problem can be applied at each time

to solve this problem, and our algorithm can be used to solve it efficiently enough. However, this static

approach does not give us other useful information about the dynamics; for instance, how fast a point

in space will become visible or invisible. In many cases, the problem can be solved even faster if the

visibility at a previous time is used effectively to produce visibility at future time. Thus we study the

dynamics of curves on the occluders that separate light and dark regions on the occluders. The curves

in fact can be represented using a level set approach, following the work of [6,8]. We derive motion

laws for all these types of curves and evolve them under the level set framework. Thus, this part of our
our work complements the book of Cipolla and Giblin [10] which discusses the reconstruction of shape

from the perspective (orthogonal) projection of the horizons. To complete our study of visibility dy-

namics, we derive an emergence-time estimate to predict an occluded object’s emergence into view.

Obviously, researchers in the computer vision community have also studied similar topics, which are

called visual events. However, their assumptions usually involve objects which are explicitly represented
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as unions of simple geometrical shapes. We stress here again that we provide a framework to work

directly with implicit data that are easy to obtain nowadays without having to convert between data

representations. In computer vision, our study is related to what is called visual events. We refer the
readers to [13,14,18,23].

Through out this paper, we use the following notation:

• The space in which we work will be Rd , where d ¼ 2 or 3.

• xo denotes the position of the vantage point, or observer. We further assume that xo never lies in the

interior of the objects.

• X is a set of connected domains whose closure denotes the objects in question. Furthermore, let C ¼ oX.
• / denotes the level set function representing the objects of interest. We may further assume that / is the

signed distance function to C. This particular level set function can be efficiently computed using fast
algorithms such as the fast marching method of [31] or fast sweeping methods [30].

• We define the view direction vector pointing from xo to x by rðxo; xÞ ¼ ðx� xoÞ=jx� xoj. When the con-

text is clear, we will drop the arguments and write simply rðxÞ or r.
• Let x1 and x2 denote two points in space. We say x1 � x2 (x1 is ‘‘before’’ x2) if the conditions

rðxo; x1Þ ¼ rðxo; x2Þ and jx1 � xoj6 jx2 � xoj are satisfied. We also define the strict relation � if the con-

dition jx1 � xoj6 jx2 � xoj above is replaced by jx1 � xoj < jx2 � xoj.
• A point y 2 C is called a horizon point if and only if rðxo; yÞ � nðyÞ ¼ 0, where nðyÞ is the outer normal of

C at y. The horizon thus refers to the set of horizon points.
• A point y 2 C is a terminator point if and only if there is a point y� such that: (1) y� � y and (2) y� is a

horizon point. The terminator thus refers to the set of terminator points.

• The visible contour refers to the set of visible points of the horizons and terminators.

We remark here that what we called horizons are commonly referred to as ‘‘silhouettes’’ in some

communities. However, after consulting a Merriam-Webster Dictionary, we decide to use the word ‘‘ho-

rizon’’ to emphasize that it is a special curve on the occluder that is defined as above, in constrast to the

‘‘silhouette’’, which is actually what we called a ‘‘terminator’’, which is the extension/projection of a ho-

rizon to a reference plane (e.g. the retinas of our eyes).
2. Implicit ray casting

We now set up the foundation of our approach and derive properties of ray casting of a single point

source in an implicit framework. The motivation is that the visibility along each ray emanating from the

vantage point satisfies a causality condition: if a point is occluded, then all other points farther away from

the vantage point on the same ray are also occluded, i.e., if x1 is occluded and x1 � x2, then x2 is also
occluded.

We can describe the result of this causality on a sphere centered at the vantage point. Define

qðhÞ ¼ minx2Rdfjx� xoj : rðxo; xÞ ¼ h;/ðxÞ6 0g if exists;
1 otherwise:

�
ð2:1Þ

Any given point x is invisible if qðrðx; xoÞÞ6 jx� xoj. Please see Fig. 1 for an example. However, q is

typically a piecewise continuous function with large jump discontinuity which causes some computational

difficulties. In the graphics community, this is closely related to what is called the z-buffer. We defer our

discussion of constructing accurate approximations of q in a forthcoming paper [9].

In this section, we will provide two closely related interpretations and their corresponding numerical

methods. In the first interpretation, the visibility function w has a closed analytical expression while in the

second interpretation, w is the solution of a boundary value problem of a first order linear PDE. The
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methods to construct approximations to both formulations are closely related and we will extend this type

of methods to incorporate a multi-level mesh refinement strategy for efficiency.
2.1. Embedding the visibility by a continuous function

Our first interpretation of this causality condition is to define a continuous visibility function

wðxÞ :¼ min
Lðxo;xÞ

/ðnÞ; ð2:2Þ

where Lðxo; xÞ is the line segment connecting xo and x. Thus if wðxÞ is negative, then x is occluded. We can

approximate the value of wðxÞ by whðxÞ as follows:

whðxÞ ¼ minðwhðx0Þ;/ðxÞÞ; ð2:3Þ

where x0 is some point ‘‘immediately before’’ x in the ray direction. Here x0 depends on the given grid

structure and whðxÞ can be found by linear interpolation in 2D or bilinear interpolation in 3D. See Fig. 2.

We defer the details of the interpolation step to Appendix A. Denote by Gx the set of grid points needed to

find whðxÞ and X the set of grid points in which the value of w is already determined. Our algorithm

imposes the condition that Gx is a subset of X. This means that as long as the values of wðx0) are computed

ahead of the computation of wðxÞ, our algorithm will be valid. Due to the hypothesis that the lines-of-sight

are straight lines emanating from xo. The region bounded by X is star-shaped with respect to the vantage

point. Naturally, the first point to update w is then xo. For example, consider the case where the vantage
point lies on the origin of the coordinate system. The grid points in the first quadrant can be updated row

by row, starting from the positive part of the x-axis, in an increasing order of their y-coordinate com-

ponent. The grid points in each row are updated from left to right, in increasing order of their x-coor-
dinate. We can thus generalize this approach: in 3D, we consider the vantage point as the origin and

approximate w in each octant separately, and inside each octant, we employ similar approach to what is

described above.
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We write down our basic algorithm as follows:

Algorithm 2.1 (Basic visibility sweeping).

1. Set wðxoÞ ¼ /ðxoÞ.
2. Do a star-shaped 1 updating sequence on the grid.
3. For each grid point x, choose x0 depending on the grid geometry.

4. Compute the value of wðxÞ via (2.3).

For clarity of exposition, we defer a detailed description to the next subsection, and also Appendix A.
Fig. 3 shows what w should look like in a one dimension setting.

Before we move on to our multi-level implementation of the above algorithm, we show below that the

solution w is no steeper than the level set function / that embeds the occluders. This means that if L is a

Lipschitz constant for /, then it is also a Lipschitz constant for w.

Lemma 2.2. For every x; y 2 Rd , iff j/ðxÞ � /ðyÞj6 Ljx� yj, then jwðxÞ � wðyÞj6 Ljx� yj.

Proof. This can be shown directly from the definition:

jwðxÞ � wðyÞj ¼ min
Lðx;xoÞ

/

���� � min
Lðy;xoÞ

/

����6 jð/ðxoÞ � Ljx� xojÞ � ð/ðxoÞ þ Ljy� xojÞj6 Ljx� yj: �

2.2. PDE interpretation and extensions

We just describe an algorithm for constructing our ‘‘solution’’, Eq. (2.2), to the single vantage point

visibility problem. Here, we propose yet another approximation scheme to (2.2) using upwind finite dif-

ferencing technique for solving PDEs.

Our algorithm is the following: Set w ¼ /. At grid point xi;j, wi;j is computed by:

1. Solve for wi;j by upwinding:

rwi;j � rðxi;jÞ ¼ 0: ð2:4Þ

2. Update

wi;j ¼ minð/i;j;wi;jÞ:
1 See Appendix A.2.
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To faciliate the description of solving Step 1, we first make the following definition.

Definition 2.3 (Finite difference operators). We define the backward finite difference operators D�
x , D

�
y by

D�
x wi;j :¼ �

wi�1;j � wi;j

Dx
;

and

D�
y wi;j :¼ �

wi;j�1 � wi;j

Dy
:

The forward difference operators Dþ
x , D

þ
y by

Dþ
x wi;j :¼

wiþ1;j � wi;j

Dx
;

and

Dþ
y wi;j :¼

wi;jþ1 � wi;j

Dy
:
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For simplicity, we will assume that xo ¼ ð0; 0Þ, x ¼ ðx; yÞ, rðxÞ ¼ ðr1; r2Þ, and shall introduce an upwind

scheme in the first quadrant Xþ;þ ¼ fxP 0; yP 0; xy 6¼ 0g. In this region, Eq. (2.4) is discretized by regular
upwind scheme

r1ðxi;jÞD�
x wi;j þ r2ðxi;jÞD�

y wi;j ¼ 0:

For convenience, we define Gþ;þ to be the function that computes the solution for the above equation; i.e.,

wi;j ¼ ð 1

r1ðxi;jÞ þ r2ðxi;jÞ
Þ�1 r1ðxi;jÞwi�1;j

�
þ r2ðxi;jÞwi;j�1

�
ð2:5Þ

:¼ Gþ;þðwi�1;j;wi;j�1Þ: ð2:6Þ

Correspondingly, we can define the solution ‘‘operators’’ Gþ;� for the subdomain Xþ;� ¼ fxP 0;
y6 0; xy 6¼ 0g, G�;þ for X�;þ ¼ fx6 0; yP 0; xy 6¼ 0g, and G�;� for X�;� ¼ fx6 0; y6 0; xy 6¼ 0g, respec-
tively, by

r1ðxi;jÞD�
x wi;j þ r2ðxi;jÞDþ

y wi;j ¼ 0; xi;j 2 Xþ;�;
r1ðxi;jÞDþ
x wi;j þ r2ðxi;jÞD�

y wi;j ¼ 0; xi;j 2 X�;þ;
r1ðxi;jÞDþ
x wi;j þ r2ðxi;jÞDþ

y wi;j ¼ 0; xi;j 2 X�;�:

Thus, the algorithm can be written as:

Algorithm 2.4.

for i ¼ 0:n
for j ¼ 0:m (i or j 6¼ 0)
wi;j ¼ minðGþ;þðwi�1;j;wi;j�1Þ;/i;jÞ.
for i ¼ 0:n
for j ¼ 0:�1:�m (i or j 6¼ 0)

wi;j ¼ minðGþ;�ðwi�1;j;wi;jþ1Þ;/i;jÞ.
for i ¼ 0:�1:�n
for j ¼ 0:m (i or j 6¼ 0)

wi;j ¼ minðG�;þðwiþ1;j;wi;j�1Þ;/i;jÞ.
for i ¼ 0:�1:�n
for j ¼ 0:�1:�m (i or j 6¼ 0)

wi;j ¼ minðG�;�ðwiþ1;j;wi;jþ1Þ;/i;jÞ.

For xo 2 ½0;Dx� � ½0;Dy� not lying on a grid point, we can either replace the constraint (i or j 6¼ 0) by (i
or j 62 ½0;Dx� � ½0;Dy�) in algorithm 2.4, or we can use a slightly different discretization. For example for

x1;j, 1P jP n,

D�
y wi;j ¼ � r1ðxi;jÞ

r2ðxi;jÞ
D�

x wi;j�1: ð2:7Þ

This corresponds to the interpolations described in Appendix A for (2.3). Extension to 3D cases follows in a

straightforward manner. Fig. 4 2 provides a result of the above algorithm applied to a real city model.
2 The authors thank Prof. John Steinhoff and Yonghu ‘‘Tiger’’ Wenren for their help in obtaining this data.



Fig. 4. A visibility result applied to a city grid. The blue surface represents the occluders, and the red surface represents the boundary

between visible and invisible regions with respect to the vantage point at the position ð100; 210Þ. (For interpretation of the reference to

colour in this figure legend, the reader is referred to the web version of this article.)
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To demonstrate the flexibility of our formulation, we consider the general case, in which the integral

curves of rðxÞ are more complicated than straight lines. Assume that w > 0 on a set O(X and rðxÞ be a

differentiable vector fields such that for the integral curves starting from every interior point of X traces

back to O. For example, our main focus in this paper has been the case in which rðxÞ ¼ ðx� xoÞ=jx� xoj,
and O ¼ fxog. In this slightly more general setting, formula (2.2) is generalized to

wðxÞ ¼ min
y2 ~LðO;xÞ

/ðyÞ;

where ~LðO; xÞ ¼ fthe flow line connecting x to Og. We can use a variant of the fast sweeping method [30]

to solve this problem. See Fig. 5 for a result under this kind of ray field, and the corresponding result

computed this way.
Fig. 5. Visibility under a bending ray field.
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An alternative interpretation of the causality condition stated in the beginning of this section is to

formulate it as a boundary value problem for the following first order PDE:

rw � rðxÞ ¼ minðHðw� /Þr/ � rðxÞ; 0Þ; wðyÞ ¼ /ðyÞ 8y 2 O; ð2:8Þ

where HðzÞ ¼ v½0;1ÞðzÞ is the characteristic function of ½0;1Þ. Consequently, we have an the a priori

estimate

jrwj ¼ max
jrj¼1

rw � r6 max
jrj¼1

r/ � r ¼ jr/j6 L;

i.e. Lemma 2.2 holds for solutions of (2.8). We point out, however, that much study is needed for this kind

of PDEs having discontinuous coefficients.

2.3. Estimates of visibility change using Lipschitz constant

Our multi-level approach to the visibility problem requires the skipping of large regions which are de-

termined a priori to be either visible or invisible. This hinges upon the ability of determining whether any

given voxel is completely ‘‘inside’’ or ‘‘outside’’ of the objects, and can be done conservatively with the help

of the Lipschitz constant of the embedding level set function /.
If we assume that we know the values /ðyÞ, /ðzÞ > 0, and let x be a point on the line segment joining y

and z. We would like to know if /ðxÞ can be negative. Let C be the Lipschitz constant of /. It dictates the
maximal decrease in values from y to x to be Ljy� zj, therefore,

/ðxÞP/ðyÞ � Ljy� xj

and, similarly

/ðxÞP/ðzÞ � Ljz� xj:

Hence, if 06/ðyÞ � Ljy� xj and 06/ðzÞ � Ljz� xj, we can conclude that the values of / along the line
segment connecting y and z always stay above zero.

We thus generalize the above observation to determine the sign of / or w over a rectangular or a cubic

region that we call a voxel. Let xc be the center point and xi the vertices of the given voxel V . If

/ðxiÞ þ Ljxc � xij < 0 8i; ð2:9Þ

then we know /jV < 0 (V � f/ < 0g). Conversely, if

/ðxiÞ þ Ljxc � xij > 0 8i; ð2:10Þ

then we know /jV > 0. Since / is the signed distance function, as we pointed out in the previous subsection,

a Lipschitz constant of w can be taken to be 1.
Let wh denote the approximation of w constructed using a grid with mesh size h. If we can obtain an L1

error bound EðV ;whÞ of wh to the analytic solution w on the given voxel V , we can conservatively estimate

both the visible and invisible regions from our approximation wh, i.e.

Case 1. If ðwhðxiÞ þ EðV ;whÞÞ þ Ljxc � xij < 0 8i, then wjV < 0. (V is definitely invisible.)

Case 2. If ðwhðxiÞ � EðV ;whÞÞ þ Ljxc � xij > 0 8i, then wjV > 0. (V is definitely visible.)

2.4. A multi-resolution algorithm

We offer a mesh refinement strategy to further accelerate our one-pass implicit ray casting algorithms.

Essentially, these are all applications of the method of characteristics for first order PDEs.
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Assuming the ability of determining whether a given voxel lies completely inside or outside of an oc-

cluder, 3 we propagate these voxels along the rays from the vantage point, and obtained a set of voxels over

which the visibility status does not change. We then refine our grid over the remaining region. This is in
similar spirit to what is reported in [25].

Given a grid at resolution 2h, we use Vþ
2h and V�

2h to represent the subsets of X over which the analytic

solution w is determined to remain positive and negative, respectively. Furthermore, let V2h ¼ Vþ
2h [V�

2h

and let oV	
2h denote that boundary of V	

2h. We refine the grid over the region Xh ¼ X2h nV2h and sub-

sequently determine the sets V	
h=2.

One way to find V	
h=2 is to solve wh for the same PDE with different boundary conditions:

rwh � rðxÞ ¼ minðHðw� /Þr/ � rðxÞ; 0Þ for x 2 Xð0Þ
h ; the interior of Xh;

BC : whðxÞ ¼ /ðxÞ if x 2 oVþ
2h and rðxÞ � nXðxÞ > 0;

w2h
intðxÞ if x 2 oV�

2h and rðxÞ � nXðxÞ > 0;

�8<
: ð2:11Þ

where nX is the inner normal of oXh, and w2h
int is a linear interpolant of the grid function w2h. We then

determine Vh using the analysis shown in the previous section. Hence, we can repeat this procedure until

the desired resolution is reached. This approach, however, requires either a priori or a posteriori estimates

of the error to the viscosity solution of the given problem. It will be reported in a forthcoming paper by the

authors.

The second way is the following: At each resolution level, we construct another function M such that for

each voxel V in the domain, MhðxÞ ¼ ð~V ; r; �/Þ, where the first component ~V is the ‘‘source’’ voxel of V (see

Footnote 3), the second component is the visibility of V (r ¼ 1 if visible, �1 if invisible, 0 inconclusive), and
the third will be the constant continuation of the values of / along rðxÞ from the ‘‘source’’ voxels.

We first identify those Vj on which the embedding level set function / is negative; these are the ‘‘source’’

voxels. Set MðxÞ ¼ ðVj;�1; �/Þ. Find Vo that contains xo. If / is positive over Vo, set MðxÞ ¼ ðVo; 1; �/Þ. Let
Xh ¼ X2h n ðð

S
j VjÞ [ VoÞ. We then ‘‘solve’’ the following problem by method of characteristics:

~rMh � rðxÞ ¼ 0 for x 2 Xð0Þ
h ;

BC : MhðxÞ ¼ M2hðxÞ if x 2 oVþ
2h [ oV�

2h and rðxÞ � nXðxÞ > 0:

�
ð2:12Þ

In a 2D setting, at each vertex x of V , MhðxÞ ¼ hMðxjÞ þ ð1� hÞMðxkÞ for some upwind neighbors xj and
xk, and some h 2 ½0; 1� determined by rðxÞ. However, we modified MhðxÞ after the update formula by

rounding the second component ofMh that is neither 1 nor �1 to 0. Finally, a voxel V is determined to be in
V�

h , or Vþ
h , if, on V , the second component of Mh is �1, or 1, and the voxels referred to by Mh are all

immediate neighbors to each other. Please see Fig. 6 for a demonstration of this algorithm.

As for complexity, the operation count for our multi-level algorithms is OðNd�1 logNÞ. Here N ¼ 1=h
where h is the smallest spatial stepsize used in the multiresolution framework and d is the dimension of the

space. The Nd�1 part of the complexity comes from the fact that a codimension one hypersurface in d-
dimensional space is being generated under fast sweeping and the logN part comes from multiresolution.

The memory allocation of our algorithm is also OðNd�1 logNÞ, with the logN part once again due to

multiresolution.
We point out here that for applications in which the occluders are triangulated and one is only interested

in the visibility information projected on an image plane, there are already many specialized algorithms and

hardware designed available. The purpose of our algorithm is to work with implicit data and find visibility

information in the whole ambient space without the costly operations of changing representations.
3 Later on, we will call these voxels the ‘‘source’’ voxels.



Fig. 6. This is a schematic diagram for the multi-resolution algorithm. Occluded voxels are depicted in blue and visible ones in red. The

regions are target for next level refinement. The red curves represent the boundaries of the occluders, and the vantage point is posi-

tioned at ð1; 1Þ. The sizes of the voxels are: 64� 64, 16� 16, 4� 4, and 1� 1.
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2.5. Multi-scale considerations

If we consider the visibility problem in applications related to human vision, such as 3D virtual envi-

ronment rendering, it is natural to put a scale parameter into the size of the objects related to the distance of

the object from the vantage point. We want to ignore certain isolated and small objects that are far away

from the vantage point using this information. It is important to notice that a collection of closely posi-

tioned small objects can form a visible ensemble, seen for example in clouds and trees. This observation has

been implemented in the work reported in [27].

Using the level set representation of the virtual environment in conjunction with the solution properties
of certain PDEs, we are able to deal with this issue easily without explicitly considering each object sep-

arately. The idea is to dilate the interface first so that small objects can merge to form ensembles of larger

size. We then shrink the interfaces (one possibility is to perform curvature driven motion) such that re-

maining small objects will disappear (see Fig. 7). The result of this approach follows the regularization

effect of viscosity solution theory for Hamilton–Jacobi equations. It is basic mathematical morphology, and

can be done easily, see e.g. [4,24].
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Fig. 7. An example of grouping.
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We shall return to a brief discussion of scales at the end of this paper, after we discuss the dynamics of

visibility.
3. Dynamic visibility

In this section, we introduce an implicit framework for tracking the change in visibility when the vantage

point or the underlying occluders are changing in time. Typically, disconnected components of the invisible
regions may merge and one single connected component may break up into several pieces; completely

occluded objects may emerge into the scene and occlude parts of the domain that was previously visible. In

many of these situations, the topology of the occlusion changes and implicit methods such as the level set

methods become attractive options.

For simplicity, we consider the case in which the vantage point is moving and the ocluders are stationary.

We formulate the visibility problem so that the points which are on the boundaries of the visible regions on

the surfaces of the occluders can easily be identified. The dynamics of these points are derived so that one

can track the visible regions according to the motion of the vantage point xo.
For a single convex object, the horizon determines the visibility information on the surface. Therefore,

tracking the motion of the horizon for all time gives us incremental information on the change of the visible

portion of the object. For non-convex objects or multiple objects, these horizon extends the rays to other

parts of the surfaces, and thereby creating another type of occlusion boundaries which we coin ‘‘termi-

nators’’, based on The Merriam-Webster Dictionary. We remark that ‘‘terminators’’ correspond to shadow

boundaries if xo is viewed as a point light source. Similar to the horizons, one side of a terminator is visible

while the other not. In summary, the points forming the boundaries of visible regions on given surfaces can

be placed into two categories:
• points that are part of the horizon;

• points that border shadows cast by some surface (terminators).

We shall see that the motion of the horizon is characterized by the orthogonality constraint and it, in

turn, becomes a part of the constraints of the terminator motion.

In our level set formulation, we create a continuous function whose zero level set captures the curves

described above. We also propose a method that relates each point on the terminator to a point on the

horizon of the surface casting the shadow. This description should be global, that is, quantities should vary

‘‘continuously’’ with respect to points not on the surface.
For a single convex object, tracking the horizon is certainly the optimal solution. With the fast sweeping

algorithms and local storage strategies, the complexity of the level set approach to track the horizon and
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terminator curves is formally OðNÞ both in operation count and in storage. Here, the number N is the

number of points used to resolve the curves. In more realistic applications, we need to consider the situ-

ations in which (1) the velocity fields for the horizons and terminators become singular, (2) some ‘‘hidden’’
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Fig. 8. Finding the visible horizons and their casts. The occluders are the two circles depicted by the blue curves, and the vantage point

is located at ð�1;�1Þ. The green curves are the zero level set of �h. Visible horizons and their casts are characterized by the intersections

of different level set functions as described in the text.
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object may appear and create new terminators. Indeed, these are among the most difficult problems in this

area. We will address this difficulty in a later subsection. If the visibility information in the whole ambient

space is needed, we think that our previous ‘‘static’’ approach might generate more elegant and easier-to-
implement algorithms with comparable performance (see Fig. 13). However, the additional information

about how shadow boundary moves may be used together with the static visibility algorithm for many

dynamic type applications.

In the following, we will first propose an implicit characterization of the horizons and their termi-

nators. The procedures involved consist of our ‘‘static’’ algorithm and some simple Boolean operations

on sets.

3.1. Finding the horizon and the terminator implicitly

3.1.1. Finding the horizon

We extend the orthogonality condition that defines the horizon and arrive at

�hðx; tÞ ¼ ðx� x0Þ � r/ðxÞ: ð3:1Þ

We observe that its zeros correspond to the critical point of / along the flow lines that pass through, i.e.

wðxÞ ¼ /ð~yÞ for some ~y 2 ~LðO; xÞ andr/ð~yÞ � rð ~yÞ ¼ 0. We also noted above that �h completely determines

the visibility of any convex object embedded in /

f�hðxÞ6 0g \ f/ ¼ 0g () visible:

In general cases, where there are multiple objects (convex and non-convex), �h does not give exact visibility

information anymore. It just provides local visibility information just as local extrema may not be absolute

extrema.

Due to its definition (3.1), �h will still be non-negative on the parts of the surface facing the source, even

though those parts are completely occluded. Instead, �h gives a conservative ‘‘estimate’’ of the shadow

f�hðxÞ > 0g \ f/ ¼ 0g ) invisible:

Thus the visible horizon is

f/ ¼ 0g \ f�h ¼ 0g \ fwP 0g;

where w is the visibility function coming from our static algorithm. Fig. 8 gives an example of horizons

found this way.

3.1.2. Finding the terminator

How do we find the terminator? Our idea is to overshoot each ray that is tangent to the visible horizons

when it hits another part of C; thus the intersections of these rays and C correspond to exactly the ter-

minators. This ‘‘overshooting’’ strategy is, of course, implemented by an auxilliary level set function ~w, and
f~w ¼ 0g will cut through C on the terminator, therefore, providing an implicit representation of the ter-
minator. Consider ~/ ¼ maxð/;��hÞ, then f~/6 0g corresponds to the set f�hP 0g

T
f/6 0g, a set created by

‘‘carving off’’ a neighborhood of the visible portions the occluders. We notice that the occlusion generated

by the set f�hP 0g
T
f/6 0g is the same 4 as f/6 0g. Therefore, we can construct ~w as the solution of (2.8)

with ~/ on the right-hand side, instead of /. Consequently, the shadow boundaries, f~w ¼ 0g, extending from
the horizons cut through portions of the original occluders f/6 0g, and the intersections corresponds to

the terminators. Fig. 8 shows the operations described above in a simple two circle setting. Additionally, we
4 Modulo a small subset of f/6 0g, which we know is invisible by definition.



Fig. 9. Visible contour (portions of horizon and terminator that are visible).
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can even make f~w ¼ 0g perpendicular to C locally around the intersection by evolving the following PDE
for a small amount of time (see [19]):

~ws þ sgnð/Þr~w � r/
jr/j ¼ 0; ~wðx; s ¼ 0Þ ¼ ~wðxÞ:

Here s is a pseudo-time related to the PDE. If the system is evolved to s1, then the zero level set of ~wðx; s1Þ
will be orthogonal to f/ ¼ 0g in a tube with radius s1 around f/ ¼ 0g \ f~wðx; s1Þ ¼ 0g. We then use
~wðx; s1Þ as ~wðxÞ.

With these characterizations, we can easily identify the visible contours. See Figs. 9–12 5 for examples. In

these figures, the visible portions of the horizons and the terminators are depicted as cyan and yellow
curves, respectively. A green circle is drawn to reveal the location of the vantage point in each setting. The

boundaries between visible and invisible regions are represented by blue surfaces. We observe that the blue

surfaces cut through the objects exactly at the visible contours.

3.2. The dynamics of the horizon

Let xoðtÞ be the position of the vantage point and xðtÞ be a corresponding point on the horizon at time t.
We first consider a single convex occluder X embedded by the signed distance function /. This translates
into the following constraints on xðtÞ:

/ðxðtÞÞ ¼ 0;
ðx� xoÞ � r/ðxÞ ¼ 0:

�
ð3:2Þ
5 The terrain data were obtained from ftp://ftp.research.microsoft.com/users/hhoppe/data/gcanyon/.

ftp://ftp.research.microsoft.com/users/hhoppe/data/gcanyon/


Fig. 10. Visible contour (portions of horizon and terminator that are visible).

Fig. 11. Silhouettes and terminators obtained from the elevation data of Grand Canyon.
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Let nðxÞ denote the outer normal of oX at x. In our level set framework, nðxÞ is the restriction of r/=jr/j
to the zero level set of /. In two dimensions, we can invert the above constraints and derive that

_x ¼ _x
_y

� �
¼ 1

j

_xo � nðxÞ
jx� xoj

rðxÞ: ð3:3Þ

Here, j is the curvature of the occluding surface at x. This formula is derived in detail in Appendix A. In

three space dimensions, the horizon becomes a closed curve CðsÞ ¼ xðs; tÞ, where s is the arc length of CðsÞ.
Let P be the plane tangent to _xo, passing through CðsÞ and xo. Let bðrÞ be the curve on the intersection of P
and oX. Then, locally at t and x, we have a two-dimensional visibility problem on the plane P , in which bðrÞ



Fig. 13. By taking the intersection of the occlusion during a trajectory of the observer, we can find the cumulative occlusion easily and

efficiently. The following pictures show a progression of the cumulative occlusion subject to an observer (‘‘spy plane’’) moving across a

region of Grand Canyon.

Fig. 12. Terminators and terminators obtained from the elevation data of Grand Canyon.
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Fig. 14.

278 Y.-H.R. Tsai et al. / Journal of Computational Physics 199 (2004) 260–290
defines the boundary of the objects. Following this reasoning, j should naturally be taken from bðrÞ. See
Fig. 14.

Alternatively and more naturally under our level set formulation, we rederive the above motion law as

_x ¼ IIðx� x0Þ
jIIðx� x0Þj2

_x0 �
r/
jr/j

� �
; ð3:4Þ

where II is the second fundamental form, which can conveniently be extended to the other level sets and

takes the form

II ¼ 1

jr/j Pr/r2/Pr/:

Here, Pr/ is the orthogonal projection matrix projecting vectors to the plane with normal vector parallel to

r/. Thus the j in (3.3) denotes the normal curvature of the surface in the viewing direction.

For a detailed derivation and implementation, please see Appendixes A.4, A.3, and A.6. Fig. 15 shows a
result of horizon motion on a non-convex body.

3.3. The dynamics of the terminator

Assume that x is a terminator point and x�ðxÞ is its generator. In two dimensions, the motion of x is

determined by the following constraints:

/ðxÞ ¼ 0;
x�xo
jx�xoj ¼

x��xo
jx��xoj :

�
ð3:5Þ

Inverting, we find that the motion of the terminator can be written as follows:

_x ¼ 1

r � nðxÞ
jsj
js�j

_s� � ðr�Þ?
�

þ _xo � r?
�
n?ðxÞ; ð3:6Þ

where r� is the velocity of the generator x�,



Fig. 15. A example of moving silhouette around a non-convex occluder. Observe that the silhouette curves break and change topology.
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n?ðxÞ :¼ /x2ðxÞ
�/x1ðxÞ

� ��
jr/ðxÞj;

and similarly for r?. See Appendix A.5 for a detailed derivation. See Fig. 16 for a computational result

using this formula. We notice that these constraints also tell us how the shadow boundaries should move.
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Fig. 16. A result of tracking the terminator and terminator motion using the formulas derived in this paper. The blue curve represents

the trajectory of the vantage point and the green curves represent the paths of the terminator and terminator. The black line links the

current position of the vantage point and the terminator; it shows that the colinearity of the vantage point, the horizon and its ter-

minator is preserved. (For interpretation of the reference to colour in this figure legend, the reader is referred to the web version of this

article.)
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In three dimensions, we can reduce the instantaneous motion to a two-dimensional problem on the

correct section of the surface following the reasoning given in the previous subsection.

3.3.1. Motions of the shadow boundaries

How does the shadow move in space? We can constrain a point on the shadow boundary to move only

normal to the viewing direction (ergo, the shadow boundary):

x0 � r ¼ 0;
x�xo
jx�xoj ¼

x��xo
jx��xoj :

�
ð3:7Þ
3.3.2. Motions of horizons and terminators of dynamic surfaces

We remark that we are able to derive the motion laws of the visible contours even when the occluders are

changing shapes. In this case, the embedding level set function / is a function of space and time, /ðx; tÞ and
differentiating formulas (3.2) and (3.5) with respect to t will bring /ðx; tÞ into the equations.

3.4. Analysis of the motion

The formulae derived in the previous subsection can be regarded as a Lagrangian description of the

horizon/terminator motion. We extend the velocity to the domain near the surfaces and obtain the cor-

responding velocity field vðxÞ. We then evolve the level set function(s) u by

ut þ v � ru ¼ 0:

In the context of our visibility framework, u denotes the level set functions involved, such as /;w; . . ., etc.
The velocity fields for a horizon and its terminator do not depend on the function u. In horizon motion, we

evolve �h, the velocity is a function of position, time, _xo, and the derivatives of /, i.e. v ¼ vðt; x; xo;r/;D2/Þ.
Furthermore, the level set function to be evolved is �h. In terminator motion, we evolve ~w, we have
~v ¼ ~vðt; x;xo;r/;D2/; �hÞ. Therefore, we are evolving the following two level set equations:

�ht þ vðt; x; xo;r/;D2/Þ � r�h ¼ 0;
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~wt þ ~vðt; x; xo;r/;D2/; �hÞ � r~w ¼ 0:

These are simple convection equations whose viscosity solutions are well studied, provided that the velocity

fields are bounded. We only have to be careful near singularities.
Formula (3.3) reveals a few interesting facts. First, we notice that the speed of the horizon motion is

inversely proportional to the normal curvature in the viewing direction and to the distance between the

horizon and the vantage point. If the vantage point is moving in the tangent direction m, the horizon will not

move (since _xo � n ¼ 0). The speed of the horizon motion becomes singular if the curvature of the surface at

the horizon location becomes zero. On strictly convex objects, this will never happen. If we restrict our

analysis to a single connected smooth non-convex object, we see easily that at the instance in which a

horizon point moves into the location where j ¼ 0, a neighborhood of this location becomes completely

visible. This signifies the disappearance of the horizon point. If the course of the vantage point is reversed,
we get the genesis of a new horizon point.

Formula (3.6) tells us that the motion of a terminator point becomes singular when it is a horizon

point (m � n ¼ 0). On a single non-convex smooth surface, this happens precisely when a horizon point

and its cast across the concavity collide into each other at the location where j ¼ 0. In the setting

where there are multiple strictly convex objects, this also describes the changing of the terminator into a

visible horizon point which is previously invisible. Therefore, the singularities of the horizons and

terminators describe a part of their genesis. A complete genesis of the visible contours includes another

part, in which a hidden object suddenly becomes visible. We shall discuss this point in a later
subsection.
3.5. Relating horizon and its terminator

To move the terminator, following the notation used in the previous section, we need to find x�ðxÞ for
each point x on the terminator. Of course, on the continuum level, x and x�ðxÞ are related by

x�ðxÞ :¼ x� xðxÞrðxÞ;

xðxÞ can be computed by

xðxÞ ¼ jx� xoj � qðrðxÞÞ;

where r and q are defined. In fact, finding q or x is equivalent to solving the visibility problem. Here, we

propose an implicit method to find the connection between a horizon point and its terminator in a fashion

consistent with our PDE approach; i.e. propagating information along the characteristics of a first order

PDE.

In general, let rðxÞ be the ray vector field. We can propagate any ‘‘seeding’’ horizon point along the ray.

We will create a vector field P by the following procedures:

1. Set P ¼ P0 62 X.
2. Let �h be defined as in (3.1), Ta be a thin tube of radius a around the horizon, and oHa ¼ Ta \ f�hP 0g.

Solve by upwinding
~rP � rðxÞ ¼ 0; P ðzÞ ¼ z 8z 2 oHa [ fxog:
Again, from the method of characteristics, P is extended constant to the ray direction from the horizon. See

Fig. 17. The solution P is a piecewise continuous function that is continuous around the terminator. When

we move the points x near terminator, we also move move the points P ðxÞ, which are points near the

horizon. By continuity, we will have the right motion with the terminator.
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3.6. Reinitialization and emergence-time estimate

It can be easily seen from figure 18 that a completely hidden object may suddenly become visible at a
later time during the journey of the vantage point. At the time of emergence, we need to reinitialize our

algorithm, i.e., we need to find the visible contours on the newly emerged surfaces to get the correct visi-

bility information. This was discussed in [12] in the usual setting of computation geometry, in which objects

of consideration consist of polygons.

Assuming that we are merely tracking the visibility boundaries on the objects. How do we know when to

initialize? We can formalize the reasoning as follows. We define the map G�1 : Sd�1 7!fxigNðhÞ
i¼0 such that

G�1ðhÞ :¼ fxi 2 Rd : r/ðxiÞ=jr/ðxiÞj ¼ h and /ðxiÞ ¼ 0g:

This map is the inverse of the Gauss map in the case that f/ ¼ 0g is a strictly convex hypersurface. Let S
be the set containing x and x�. We reinitialize whenever there exists an x 2 S such that 9y 2 GðrðyÞÞ with
x�ðxÞ � y � x. This provides an explicit criterion for reinitialization, but it is certainly not a trivial task. In

our implicit formulation, we have enough information about the spatial structure of the occluders that we

are able to derive an estimate on the time of emergence of an hidden object by using the knowledge of: (1)

how the shadow moves; (2) how far a hidden surface is from the shadow boundaries.
Fig. 18. Model scenario I.
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Given the current vantage point position and its motion, we want to estimate the emergence time for an

object that is occluded. We begin by assuming the the curvatures of the surfaces locally around the regions

of interest are constant. The diagram in Fig. 19 shows a model configuration: The small circle is initially
occluded by the larger circle on the left. We want to estimate the time interval dt between this instance t0
and the time t1 ¼ t0 þ dt when the small circle first emerges into the scene.

Following the discussion above, consider a point y on the shadow boundaries away from the horizon

such that r/ðyÞ ? rðyÞ and r/ðyÞ � r/ðyðxÞÞ > 0. This is the point closest to some hidden part of the

objects.

For consistency of notation, we will use D in place of y. Let dE be the distance from E to the shadow

boundary containing C and D and the circle centered at O0. Let q and q0 be the radius of the circle centered

at O and O0, respectively. Let d denote the distance between D and C0. We have the following identities:

CC0 ¼ q tan
dh
2
; CD ¼ d � CC0 ¼ d � q tan

dh
2

) DE ¼ CD sin dh;
O0A0 ¼ 1

cos dh
q0; DE ¼ dE

cos dh
:

Therefore, we can find dh from the last two equalities. Since we know how fast the horizon is moving, we

can then determine dt. Let _x ¼ j _xj1,
DE
dt

¼ j _xj1; dt ¼ DE
j _xj1

:

3.6.1. Further considerations — spatial and temporal scales

We have mentioned in the beginning of this paper that the approach of moving the visible contour may

not be more efficient than simply performing implicit ray casting in general ‘‘large world’’ configurations.
Here we construct such a case to validate our arguments.

Consider a non-convex part of an object as shown by the dashed red curve in Fig. 20. Suppose the

dashed curve is broken down into dense small disconnected components. In the case where the red curve is

the non-convex part of a connected component and with the viewing direction being depicted in Fig. 20, the

terminator will move continuously on the non-convex part of the object without need for reinitialization.
δθ

δθ

δθ
O

O’

A

B

B’

A’

C

D

C’

E

Fig. 19. A diagram for emergence time estimate.
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In essense, this is really an issue of spatial and temporal scales. If the time scale of interest is significantly

larger than the distance between these objects, i.e. the vantage point and the occluding surfaces are moving

relatively fast when compared to the size of the occluders, then frequent reinitialization is inevitable, and

the dynamic approach may be inpractical. In this case, we can reconsider the strategy mentioned earlier in

Section 2.5 of merging these small pieces together, and consider the dynamics in the new ‘‘homogenized’’

setting.
4. Conclusion and future directions

In this article, we introduced an implicit ray casting algorithm that is parallelizable. This was then ex-

tended to a multi-resolution algorithm for near optimal efficiency. Our one-pass, one level algorithm can be

implemented on other grid geometry by either considering the discrete Galerkin Method, or by imple-

menting the interpolation procedure defined in Appendix A. We showed that the implicit framework

captures accurately the shadow boundaries, which include the horizon and terminator curves. We studied
how these objects move when the source point is moving. Explicit formulae which reveal the relations

between the motions and the local/global geometry of the given configuration are derived and are tightly

coupled with our level set framework for implementation. Questions such as ‘‘how soon will this hidden

object appear’’ in many situations can be answered as a result of our algorithm.

There is a rich pool of applications related to the visibility problem described in this paper. Currently, we

are working on problems related to navigation, visibility with occluders changing shapes in time, in non-

uniform media. Our solutions will combine approaches both from the PDE formulation and the algorithms

in computational geometry.
Appendix A

A.1. Interpolation schemes

Since the majority of visibility applications benefit from the simplicity of Cartesian grids, we need to

adapt the algorithm in order to take advantage of this. As described in the algorithm, at each grid point

x ¼ ði; j; kÞ, we need to determine an upwind neighbor x0 and find the value of wðx0Þ. In most cases, x0 does
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not lie on the grid. Therefore, we need to interpolate the values of w from the grid points closest to x0. For
simplicity and speed considerations, we choose to perform linear interpolation in 2D and bilinear inter-

polation in 3D. In Fig. 2, we use wðP1Þ and wðP2Þ for linear interpolation in the 2D case and use wðPiÞ,
i ¼ 1; 2; 3; 4, for bilinear interpolation of w.

We note that a fast marching or fast sweeping strategy for determining distance from the source point

and passing values can be used in place of this interpolation.

Let wint be the interpolant near x0, we know that wintðx0Þ ¼ wðx0Þ þ Oðh2Þ. Thus, the discrete visibility

equation (2.3) is in effect

wðxÞ ¼ minðwintðx0Þ;/ðxÞÞ:

A.2. Examples of star-shaped updating sequence (sweeping)

There are many different ways of implementing a star-shaped updating sequence. One approach is to use

the algorithm based on the heap sort strategy [31] to find grid nodes for update based on their distance to

the vantage point. However, due the complexity of performing heap sort, this algorithm is not optimal.

Alternatively, we use a sweeping approach in our simulation. For example, let us consider a Cartesian

grid in 2D and assume that the vantage point lies on a grid node; we can then consider separately the

visibility problem in each of the four quadrants centered at the vantage point. For simplicity, let us assume

that the vantage point is at the origin and the grid is represented by the lattice ½�nx; nx� � ½�ny ; ny � � Z2. A

compact way of writing this sweeping sequence in C/C++ is
for(s1¼-1;s1<¼1;s1+¼2)

for(s2¼-1;s2<¼1;s2+¼2)

for(i¼0;(s1<0?i>¼-nx:i<¼nx);i+¼s1)

for(j¼0;(s2<0?j>¼-ny:j<¼ny);j+¼s2)

update wi;j:
In the case where xo does not lie on a grid node, we describe an easy modification to the updating se-

quence above. Let xo 2 Io :¼ ½xi0 ; xi0þ1Þ � ½yj0 ; yj0þ1Þ. Update the values of w on the vertices of Io. Then
update the grid nodes in the strips fðxi; yjÞ : i ¼ i0; i0 þ 1 and j ¼ �ny to nyg and fðxi; yjÞ : i ¼
�nx; nx and j ¼ j0; j0þ1g. Finally, update the remaining four quadrants independently. See Fig. 21 for a

depiction of this approach.
xo

Fig. 21. The red points denote the cell vertices. (For interpretation of the reference to colour in this figure legend, the reader is referred

to the web version of this article.)



286 Y.-H.R. Tsai et al. / Journal of Computational Physics 199 (2004) 260–290
Finally, we remark that the for loops presented above are meant to demonstrate one possible upwind

update sequence for the construction of the solution. In real implementations, one should break it up for

better efficiency.

A.3. Finding the curvature of a specified direction

As we argued in Section 3.2, the three-dimensional problem of determining the motion of the horizon

can be reduced to an instantaneous two-dimensional problem. In order to move the horizon in this manner,

we need to evaluate the curvature of the surface in the specified direction. Here we present a way to do that.

Let s be the tangent vector being specified. We want to find the curvature on oX in this direction. First let

pðx; sÞ be the plane passing through x, spanned by nðxÞ and s, and let P be the level set function that embeds

this plane. Then

~s ¼ r/�rP
jr/�rP j ;

where ~sðxÞ ¼ s, and the curvature is

ksn ¼ ~r~s � ~s:
A.4. Derivation of the dynamics of the horizon

We follow the constraints (3.2):

/ðxÞ ¼ 0;
ðx� x0Þ � r/ðxÞ ¼ 0

�

and differentiate with respect to t, we have

r/ðxÞ � _x ¼ 0; ðA:1Þ
ðx� xoÞ � D2/ðxÞ _x ¼ _xo � r/ðxÞ: ðA:2Þ

In 2 space dimensions, these two relations uniquely determine the motion of x with given initial con-

ditions. Writing ðx� xoÞ ¼ jx� xojn?ðxÞ ¼ jx� xoj ð�/y ;/xÞ=jr/j, we have

jx� xoj
jr/j

�/y

/x

� �
� /xx /xy

/yx /yy

� �
_x
_y

� �
¼ jx� x0j

jr/j
�/y/xx þ /x/yx

�/y/xy þ /x/yy

� �
� _x

_y

� �
;

and

jx� xoj
jr/j

/x /y

�/y/xx þ /x/yx �/y/xy þ /x/yy

� �
_x
_y

� �
¼ 0

_xo � r/ðxÞ

� �
_x

_y

 !
¼ jr/j

jx� xoj
1

D

�/y/xy þ /x/yy �/y

/y/xx � /x/yx /x

 !
0

_xo � r/ðxÞ

� �

¼ jr/j
jx� xoj

_xo � r/ðxÞ
D

�/y

/x

� �
;



Y.-H.R. Tsai et al. / Journal of Computational Physics 199 (2004) 260–290 287
where

D ¼ det
/x /y

�/y/xx þ /x/yx �/y/xy þ /x/yy

� �
¼ �/x/y/xy þ /2

x/yy þ /2
y/xx � /x/y/xy

¼ /2
x/yy þ /2

y/xx � 2/x/y/xy :

Since the curvature of oX at x is

j ¼ r � r/
jr/j ¼

1

jr/j3
ð/2

x/yy þ /2
y/xx � 2/x/y/xyÞ;

the motion of x is

_x ¼ _x
_y

� �
¼ 1

j
_xo � nðxÞ
jx� xoj

n?ðxÞ: ðA:3Þ

We define n?ðxÞ ¼ ðx� xoÞ=jx� xoj.
Alternatively, we can write _x in a slightly different form

_x ¼ Pr/r2/ðx� x0Þ
jPr/r2/ðx� x0Þj2

ð _x0 � r/Þ;

where Pv is the orthogonal projection matrix projecting vectors to the plane with normal vector v. Let us
check this expression for the velocity of the curve. Note r/ � _x ¼ 0 since v � Pvw ¼ 0 for all vectors v and w.
Also, r2/ðx� x0Þ � _x ¼ r/ � _x0 is satisfied since Pvw � w ¼ jPvwj2 for all vectors v and w. Thus this velocity is

valid and is the first form in our alternate derivation.
Geometric interpretation. If x indeed represents the position of the curve, then x� x0 is tangent to the object

surface at x and so x� x0 ¼ Pr/ðx� x0Þ.Making this replacement above gives our second form for the velocity

_x ¼ Pr/r2/Pr/ðx� x0Þ
jPr/r2/Pr/ðx� x0Þj2

ð _x0 � r/Þ:

This form is particularly nice because we know the second fundamental form in a level set framework is

transformed to

II ¼ 1

jr/j Pr/r2/Pr/:

Thus we can rewrite the velocity in its final form

_x ¼ IIðx� x0Þ
jIIðx� x0Þj2

_x0 �
r/
jr/j

� �
:

IIv evaluated at a point represents the change in the normals of the object surface in the direction of v at

that point.

A.5. Derivation of the dynamics of the terminator

We assume that the level sets of / near x are smooth curves and are not tangent to r. In two space

dimension, we have two equations that determine the dynamics of x:
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/ðxÞ ¼ constant;
r ¼ ~r:

�
ðA:4Þ

Let s and ~s denote ðx� xoÞ and ð~x� xoÞ, respectively. Differentiating these equations, we arrive at

r/ðxÞ � x0 ¼ 0;
s0

jsj �
s

jsj2
r � s0 ¼

~s0

j~sj �
~s

j~sj2
~r � ~s0:

Notice that the term

r � s0 sjsj ¼ ðr � s0Þm

is s0 projected onto the unit vector r. Therefore, the left-hand side denotes the projection of s0 onto the unit

vector m?:

1

jsj ðs
0 � r � s0mÞ ¼ s0 � r?

jsj ¼ 1

jsj Prs
0:

Similarly, with the right-hand side, we have the equation

1

jsj Prs
0 ¼ 1

j~sj P~r
~s0:

Keeping in mind that we want to solve for x0, we move every other term to the right-hand side and arrive at

Prx0 ¼ jsj
j~sj P~r

~s0 þ Prx0
o;
r/ðxÞ � x0 ¼ 0:

In two dimensions, Prw ¼ ðw � r?Þr?, and Prw � r? ¼ w � r?, therefore, we have

r2 �r1
/x1 /x2

� �
x01
x02

� �
¼

jsj
j~sj~s

0 � r? þ x0
o � r?

0

 !
;

and consequently,

x01
x02

� �
¼ 1

r � r/ðxÞ �
/x2 r1
�/x1 r2

� � jsj
j~sj~s

0 � r? þ x0
o � r?

0

 !
¼ 1

r � r/ðxÞ ð
jsj
j~sj

~s0 � r? þ x0
o � r?Þ

/x2
�/x1

� �

¼ n?ðxÞ
m � nðxÞ ð

jsj
j~sj

~s0 þ x0
oÞ � r? ¼

ðjsjj~sj~s0 þ x0
oÞ � r?

r � nðxÞ n?ðxÞ;

where

r?/ðxÞ :¼ /x2
�/x1

� �
; and n? :¼ r?/ðxÞ

jr?/ðxÞj :
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A.6. Numerics

We computed the quantities describe in this paper using standard level set technology. Please refer to

[20–22] for details.

A.7. A list of level set functions used in this paper

We provide a comprehensive list of the level set functions we construct in this paper:

/: embeds the objects,

�hðxÞ :¼ ðx� xoÞ � r/ðxÞ: characterizes the horizon,

~/ :¼ maxð/;��hÞ: f~/6 0g ¼ f/6 0g n f�h < 0g, defines the same visibility as /,
w: the visibility map resulting from the implicit ray casting on /,
~w: the visibility map resulting from the implicit ray casting on ~/, characterizes the terminator,

P : Rd 7!Rd : links horizon to its cast implicitly.
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